Transmission Bus Load Model – the Bridge for Cross-Cutting Information Exchange between Distribution and Transmission Domains Nokhum Markushevich n.markushevich@smartgridoperations.com Smart Grid Operations Consulting www. smartgridoperations.com Presented at SGIP Meeting, Nashville, March 30, 2011 # Interrelationships between Operations of Transmission and Active Distribution Networks - The transmission operations will be significantly impacted by the operations of the Distribution System with high penetration of DER/ES, DR, and PEV. - There are many transmission and distribution operation functions which should be coordinated and will need intensive information exchange # Matrix of Mutual Information Exchanges between Functions of Smart Transmission and Active Distribution Networks Draft | oution finctions | on System planning | Distribution load forecast | t an | st and planning | ES forecast and planning PEV forecast and planning | DMS planning: DOMA | DMS planning IVVWO | DMS planning: MFR | DMS planning: FLIR | DMS planning: OMS | DIVIS pranting: Wives | Modelmg Transmission/Sub-
Transmission | Modeling Distribution | Modeling Distribution | Modeling Distributed Snergy | Modeling Distribution | Distribution Power Flow | Analysis of adequacy of | Analysis of reliability - | Power Quality Analysis | Analysis of the economic | Determining the dynamic | Determining the aggregated available | Determining the aggregated at the T&D buses | Determining the aggregated at the T&D | Intelligent Alarm
Processing (IAP) | Integrated Volt/var/Watt | tion | Fault Isolation and Service | Multi-level Feeder | Distributed generation pre- | Demand response pre-setting
Electric storage enabling pre- | Distributed intelligence | Relay Protection Re- | Pre-arming of Remedial | Coordination of Emergency | Coordination of Restorative | | Operationally critical
Architurally critical | Semantically critical (Object | | |--|--------------------|----------------------------|-------|-----------------|--|--------------------|--------------------|-------------------|--------------------|-------------------|-----------------------|---|-----------------------|-----------------------|-----------------------------|-----------------------|-------------------------|-------------------------|---------------------------|------------------------|--------------------------|-------------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|--------------------------|----------------|-----------------------------|--------------------|-----------------------------|---|--------------------------|----------------------|------------------------|---------------------------|-----------------------------|---|---|-------------------------------|----------| | trik | uţį | Ιţ |) ie | 2 E | ğ ğ | 1 [| l a | lan l | lan | lan i | 3 | ng
niss | ing | ing | ing ' | ing | ıţ | sis | is o | ō١ | is o | <u> </u> | ie ii | E Bi | mir
[&] | ger | te l | ca | Sol: | e le | nte | d r | ute | 7.0 |] - [| ii. | la t | i l | ong | ica | | | Ö | Distribution | Distrib | DER 6 | DR forecast | ES ION | DMS | DMS | DMS | DMS I | DMS I | i civid | Model | Model | Model | Modelin
Energy | Model | Distrib | Analy | Analys | Power | Analys | Detern | Deteri
availat | Deternat the | Deter
at the | Intelli | Integra | Fault location | Fault 1 | Multi | Distrib | Demar
Flectri | Distrib | Relay] | Pre-ar | Coord | Coordi | Other | Operat
Architu | Seman | Models | | Transmission Function | | | | Pla | nnin | g fur | nctio | ns | | | | | | | | | ub-f | uncti | ions (| (Situa | ation | | warene | | | | | | | | Cont | trolling | gfun | ctions | 5 | | | | T | | 1 | | 1. Normal operating conditions | Т | 1 | | П | | | ٦ | | a. Resource planning functions | > | | х | 1 | | b. System planning functions | \top | \top | | \Box | > | (| Х | | | c. Operation Planning functions | П | | | | ٦ | | i. Outage scheduling | > | (x | х | 1 | | ii. Day(s)-ahead operation planning | | | | | | | | | | | 1 | + | \top | 1 | \Box |) | (X | X | 1 | | iii. Unit Commitment/Hydro-Thermo Scheduling | | | | 1 | | | | | | | 1 | | | | | | | | | 1 | | 1 | | | | | | | 1 | | | | | + | T | T | \dagger | , , | / Y | Y | 7 | | iv. Transaction scheduling | | | | + | | \top | | | | | \top | | | | | | | \vdash | | + | _ | \dashv | | | | | | | \dashv | + | | | | + | + | + | + | 5 | | | \dashv | | d. Load forecasting functions | + | + | + | \vdash | Ť | + | | ┪ | | i. System load forecast | 1 | | | | | | | 1 | | | | | + | + | + | + | > | ζ X | _ | ┪ | | ii. Bus load forecast | | | | | | | | | | | + | + | \top | 1 | \Box | - 1 | (X | х | 1 | | e. Near real-time generation monitoring functions | i. Reserve monitoring | | | | | | | | | | | T | + | 1 | 1 | T | > | х | | 1 | | ii. Production cost monitoring | > | х | | ٦ | | iii. Evaluation of re-dispatch cost | T | 1 | Ħ | > | (X | Х | ٦ | | iv. Other | 1 | | | | | | | f. Near real-time and real-time generation control | + | \top | T | \Box | | \top | _ | - | | functions | i. Economic Dispatch |) | x | | | | ii. AGC |) | < X | | | | iii. Volt/var/Watt control | > | X | Х | | | iv. Other | i | | | | | g. Near real-time transmission monitoring | i | | | | | functions (Wide Area Situational Awareness) | ļ | | | 4 | 4 | 4 | _ | | | | | | | | | | | _ | | | | _ | | | | | | | | | | | | — | ┷ | ــــــ | $\perp \perp$ | \vdash | \perp | | 4 | | i. Topology monitoring (incl. availability of | ı İ, | , , | ., | | | controllable devices) ii. Bus load modeling (include Load-to-Voltage | | | | + | + | + | + | | | | + | | | | | | | \vdash | | \dashv | + | \dashv | | | | | - | - | \dashv | + | + | | - | + | + | + | \vdash | | (X | <u>x</u> | - | | and Load -to-Frequency dependences and load | i | | | | | management capabilities) | > | κ x | х | | | iii. State estimation (with PMU) | | | | | | | | | | | 1 | | | | | | | | | | | \neg | | | | | | | | | | | | | | | | > | х | Х | | | iv. Dynamic limit monitoring | | | | | | | | | | | T | T | T | | П | У | х | Х | 7 | | v. Network Sensitivity Analysis |) | (| Х | | | Operationally Critical | Х | Х | Х | (X | Х | Х | Х | Х | Х | х х | Х | | Χ | Х | Х | Х | Х | Х | Χ | X : | X) | x > | K | Χ | Χ | | Х | X X | X > | () | () | (X | х | Х | Х | Х | Х | | | | | | Architecturally critical | | | | | Ţ | | | | | | Х | | | • • | Х | Х | Х | | | Χ : | X) | x > | X | | Х | | | X X | X > | _ | _ | (X | х | Х | Х | Х | Х | | | | | | Semantically critical (Object models) | Χ | Χ | X X | (X | Х | | | | | | Х | | Χ | Х | Х | | | | | | |) | K | Х | Χ | Х | Χ | | | > | () | (X | х | | | Щ | Х | $oldsymbol{oldsymbol{oldsymbol{\bot}}}$ | | | ╝ | # Matrix of Mutual Information Exchanges between Functions of Smart Transmission and Active Distribution Networks (Cont.) | • | | | | | | | | | | | | |--|--|----------------------------|---------------------------|--------------------------|--------------------------|--|--------------------|-------------------|--------------------|-------------------|--|--------------|-----------------------|----------------------|----------|-----------------------|-------------------------|-------------------------|------------------------|--------------------------|-------------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|--------------------------|----------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|--------------------------|----------------------|------------------------|---------------------------|-----------------------------|----------|---|-------------------------------| | Distribution finctions | Distribution System planning | Distribution load forecast | DER forecast and planning | DR forecast and planning | ES forecast and planning | PEV forecast and planning DMS planning: DOMA | DMS planning IVVWO | DMS planning: MFR | DMS planning: FLIR | DMS planning: OMS | DIMS planning: WIMS Modeling Transmission/Sub- | Transmission | Modeling Distribution | Modeling Distributed | Energy | Modeling Distribution | Distribution Power Flow | Analysis of adequacy of | Power Quality Analysis | Analysis of the economic | Determining the dynamic | Determining the aggregated available | Determining the aggregated at the T&D buses | Determining the aggregated at the T&D | Intelligent Alarm
Processing (IAP) | Integrated Volt/var/Watt | Fault location | Fault Isolation and Service | Distributed generation pre- | Demand response pre-setting | Electric storage enabling pre- | Distributed intelligence | Relay Protection Re- | Pre-arming of Remedial | Coordination of Emergency | Coordination of Restorative | Other | Operationally critical
Architurally critical | Semantically critical (Object | | vi. Static contingency analysis |) | i x | Χ | | vii. Dynamic security analysis | > | (X | х | | Angle stability | | | | | T |) | X | х | | Short-term voltage stability |) | X | х | | Frequency stability (Generation-load | \top | 1 | | mismatch) | > | i x | х | | Slowly developing voltage stability |) | (X | Х | | viii. Cyber Security Contingency Analysis |) | (X | Х | | ix. Intelligent alarm processing | | | | | \top | | T | | | | 丁 | | | | \neg | | T | T | | | | | | | | | T | T | | | | | | | T | T | T | \top | Х | | x. Other | | П | П | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | T | \dashv | | \top | \top | | h. Near-real-time transmission optimization | | | П | | | | 1 | \neg | | | \top | | functions | 1 | i. Optimal power Flow (including load | management means in distribution) | > | . х | Х | | Loss minimization | > | (X | | | Cost of energy minimization |) | (x | x | | Locational Marginal Price minimization | | | | | T | \top | + | | (Congestion management) | > | i x | x | | ii. Security Constraint Dispatch |) | (x | × | | i. Real-time transmission control functions | | | | | T | TÍ | - | - - | | i. Distributed Intelligence control functions | \top | +- | | (localized control with overrides and arming) | | | | | 4 | | | | | | | | | | | | | | | \perp | | | | | | | _ | | | | | | | | | |) | . X | X | | ii. Close-loop combined OPF (including | aggregated controls of means in distribution) | | | | | 4 | | | - | | | | | | | _ | | | - | | +- | | | | | | | _ | _ | | | | | | | _ | | - ' | . X | Х | | j. Post mortem analyses of transmission | I, | . | | | operations. | | 1 | | | + | | - | + | | | _ | | | | | | - | - | | +- | | | | | | | - | - | | | | | | | | | | + | _X | | | | | | | 4 | _ | | | \bot | ! | | 2. Emergency Operating Conditions (including the | DER/ES, Demand Response, and interrelationships | between the transmission and automated distribution | operations) | | Ш | Ш | | 4 | | 1 | 1 | 1 | | _ | | | _ | | | 4 | 4 | | _ | | | | | | \perp | _ | _ | _ | _ | 1 | | | | 4 | _ | _ | | \perp | | a. Protection functions based on local | information | | Н | Н | - | + | | + | - | + | \vdash | + | | | _ | _ | - | 4 | + | _ | + | | | | ļ | - | \vdash | \perp | _ | _ | - | - | 1 | | \vdash | 4 | _ |) | - | + | | b. Emergency control functions based on local | 1. | , | | | information Determine functions for post mortem | | H | Н | - | + | + | + | + | + | \vdash | + | | -+ | + | \dashv | - | \dashv | + | - | + | | | | | | \vdash | + | + | + | + | \vdash | \vdash | | \vdash | + | \dashv | | + | _X | | c. Data gathering functions for post mortem
analyses | 1 | i. Event recording | | H | H | - | + | + | + | + | + | \vdash | + | | - | + | - | - | \dashv | + | | + | | | | | | \vdash | \dashv | + | + | + | \vdash | \vdash | | \vdash | + | \dashv | | | х | | ii. Transient processes recording | | Н | \vdash | -+ | + | + | + | + | + | \vdash | + | + | + | + | \dashv | + | + | + | - | + | - | | | | - | + | + | + | + | + | | \vdash | | \vdash | + | \dashv | | - | X | | | | Н | Н | + | + | + | + | + | + | \vdash | + | | + | + | \dashv | + | + | + | + | + | 1 | - | - | | - | \vdash | + | + | + | + | \vdash | \vdash | | \vdash | + | + | | - X | _X | | iii. Gathering static data on substation/generator level | 1 | , | v | | iv. Gathering static data on generation, | \vdash | \vdash | \vdash | - | + | + | + | + | + | \vdash | + | + | - | + | \dashv | \dashv | + | + | + | + | \vdash | | | | | + | + | + | + | + | \vdash | \vdash | | \vdash | + | \dashv | | + | | | transmission and distribution system levels (includes | 1 | DER) | , | , x | x | | v. Gathering static data on inter-utility level | | | H | - | + | + | + | + | + | \vdash | + | | - | + | \dashv | - | + | + | - | + | 1 | | | | | | + | + | + | + | \vdash | | | \vdash | + | \dashv | 一(| (X | X | | vi. Gathering static data on inter-utility level | | H | H | - | + | + | + | + | + | \vdash | + | | - | + | - | - | \dashv | + | | + | | | | | | \vdash | \dashv | + | + | + | \vdash | \vdash | | \vdash | + | \dashv | -(| - - | X | | Operationally Critical | Х | v | х | х х | | (X | Х | Х | v | хх | х | | х х | Х | \dashv | x) | , l | X | Х | Х | v | v | Х | Х | | Х | х х | X | Х | Х | х | x | Х | X) | () | , | + | ^_ | ^ | | Architecturally critical | ^ | ^ | ^ | ^ ^ | + | <u> </u> | + | ^ | | ^ ^ | X | | ^ ^
X X | | | x > | | + | X | X | X | x | ^ | X | | | ^ ^ | | | X | | | | x) | | - | \dashv | | + | | Semantically critical (Object models) | Х | v | х | х х | : > | , | + | + | + | \vdash | - x | | ^ ^
X X | | - 1 | ^ / | + | + | +^ | +^- | ^ | | Х | ^
v | v | X | <u>^ ^</u> | ^ | X | X | x | 1 | ^ | ^ ′ | \ \ | ` | \dashv | | | | semantically critical (object models) | ^ | ^ | ^ | л X | . / | ` | | 1 | 1 | $\sqcup \bot$ | ^ | | ^ X | ٨ | | | | | | | <u> </u> | _^ | _^ | ^ | ^ | ^ | | | ^ | ^ | ^ | ١, | | \perp | / | ` | | | $\overline{}$ | # Matrix of Mutual Information Exchanges between Functions of Smart Transmission and Active Distribution Networks (Cont.) | • | | | | | | | | | |---|--|----------------------------|---------------------------|---|---------------------------|--------------------|--------------------|-------------------|--------------------|-------------------|--|-----------------------|-----------------------|--------------------------------|-----------------------|-------------------------|-------------------------|------------------------|--------------------------|-------------------------|-------------------|---|---------------------------------------|---------------------------------------|--------------------------|--|--------------------|-----------------------------|-----------------------------|-------------------------------|----------------------|------------------------|---------------------------|-----------------------------|------------------------|-----------------------|-------------------------------| | Distribution finctions | Distribution System planning | Distribution load forecast | DER forecast and planning | DK forecast and planning ES forecast and planning | PEV forecast and planning | DMS planning: DOMA | DMS planning IVVWO | DMS planning: MFK | DMS planning: FLIK | DMS planning: WMS | Modeling Transmission/Sub-
Transmission | Modeling Distribution | Modeling Distribution | Modeling Distributed
Energy | Modeling Distribution | Distribution Power Flow | Analysis of adequacy of | Power Quality Analysis | Analysis of the economic | Determining the dynamic | available | Determining the aggregated at the T&D buses | Determining the aggregated at the T&D | Intelligent Alarm
Processing (IAP) | Integrated Volt/var/Watt | Fault location Fault Isolation and Service | Multi-level Feeder | Distributed generation pre- | Demand response pre-setting | Electric storage enabling pre | Relay Protection Re- | Pre-arming of Remedial | Coordination of Emergency | Coordination of Restorative | Onerationally critical | Architurally critical | Semantically critical (Object | | d. Post mortem analyzing functions on substation | Т | $\neg \neg$ | | level | | | | | | Ш | | 4 | _ | | | | | | | | | | | | | | | | Ш | | | | | | | | | | Х | _ | X | | e. Post mortem analyzing functions on system level | х | | x | | f. Post mortem analyzing functions on inter- | V | | | | utility level g. Near-real time monitoring function | | | | | + | | | \dagger | <u> </u> | + | _^ | | i. On substation/generator level | | | | | | П | | T | х | \top | | | ii. On generation, transmission and distribution | l | | | | T | Ħ | _ | T | T | | | T | H | | T | | 1 | | | | | | | | | | | | | | | | | | Ť | + | + | | system levels | Х | х | х | | iii. On inter-utility level | L | | Ţ | | | П | | I | | | | | П | | П | | | | Ш | | | | | | П | | | | | | | | | | Х | Х | Х | | iv. On customer level in aggregated manner | ┖ | Ш | | | ╙ | Ш | | 4 | 1 | | | | Щ | | Ш | | _[| | Ш | | | | | | Ш | | | Ш | | | L | 1 | | | Х | х | Х | | h. Near real time pre-arming and re-coordination | l | functions | ├- | Ш | | - | _ | \sqcup | 4 | 4 | \perp | _ | <u> </u> | 1 | | | \sqcup | \vdash | 4 | - | Щ | | | | | | \sqcup | _ | _ | \sqcup | | | - | 1 | _ | \vdash | 4 | +- | 4 | | i. Relay protection | ₩ | Н | _ | _ | + | \vdash | _ | 4 | + | - | - | + | \vdash | | $\vdash \vdash$ | | + | - | | _ | | | | | \vdash | _ | + | $\vdash \vdash$ | | _ | \perp | + | - | | X | _X | X | | ii. Load-shedding | 1 | Н | _ | | + | \vdash | - | + | + | | - | 1 | \vdash | | \sqcup | \vdash | + | - | | + | \longrightarrow | | | - | \vdash | - | 1 | Н | | | - | | 1 | \vdash | X | X | X | | iii. Generator-shedding | - | Н | _ | | - | \vdash | - | + | _ | - | | | | | -1 | | - | _ | | _ | | | | | \vdash | - | - | | | _ | - | - | - | | Х | - X- | X | | iv. Fast generator starts based on operational | v | I, | | | v. Intentional islanding in transmission | - | | - | - | + | + | | + | + | | - | + | | | \vdash | | - | + | | - | | | | | H | + | | | | - | - | + | + | | - | ÷ | | | vi. Intentional islanding in distribution | 1 | | _ | + | + | \vdash | _ | + | + | + | - | + | | | \vdash | \vdash | + | + | | + | | | | | H | + | + | \vdash | \vdash | + | + | + | + | | - | ÷ | - | | vii. System stabilizer | <u> </u> | | | | | \vdash | - | + | + | + | | | | | \dashv | | - | + | | | | | | | \vdash | + | | H | | | + | + | + | | Ŷ | Ŷ | Ŷ | | viii. Voltage, var, and power flow controlling | | | - | - | + | \vdash | -+ | + | + | | - | + | | | | | + | | | _ | | | | | | _ | | | | - | + | + | 1 | | _^ | Ť | - ^- | | functions | x | l _x | x | | ix. Distributed generation pre-setting | | | | | | H | | 1 | Ť | Ť | 7 | | (Aggregated) | х | х | х | | x. Demand response pre-setting (Aggregated) | | | | | | П | | Т | Х | Х | Х | | xi. Electric storage enabling pre-setting | (Aggregated) | | | | | | | | _ | Х | Х | Х | | xiii. Re-coordination of protection in distribution | systems based on transmission requirements | l | l | | | | | | | | - | \vdash | | + | _ | | | | | | | | | _ | | | | | | | | | | | | | | | - | | Х | <u> </u> | X | | xiv. Other | - | Н | - | | + | \vdash | | + | _ | _ | | - | | | -1 | | - | _ | | _ | | | | | \vdash | _ | - | | | _ | - | - | + | | - | + | + | | i. Real-time remedial action functions | - | | - | - | + | \vdash | - | + | + | + | - | - | | | \dashv | \vdash | - | + | | _ | | | | | \vdash | + | +- | \vdash | | - | + | + | + | | | + | | | i. Load-shedding ii. Generator-shedding | | | | | - | \vdash | - | + | + | + | | + | \vdash | | -1 | | - | + | | | | | | | + | _ | | | | | - | | + | | X | + | - X | | ii. Generator-shedding iii. Fast generator starts based on operational | - | | - | - | + | \vdash | -+ | + | + | | - | + | | | \dashv | | + | + | | - | | | | | \vdash | + | | Н | | - | - | + | +- | | _ ^ | +~ | ^_ | | parameters (angle, voltage, frequency, other) | v | l _v | v | | iv. Intentional islanding in transmission | t | H | + | + | + | \vdash | $^{+}$ | + | + | + | | 1 | \vdash | | \vdash | + | + | + | | - | | | | | + | + | 1 | \vdash | \vdash | _ | + | + | + | | × | - îx | X | | v. Intentional islanding in distribution (micro- | H | Н | _ | - | + | \Box | _ | \dashv | $^{+}$ | + | | t | H | | \vdash | \vdash | + | | H | | | | | | \vdash | | T | \vdash | \vdash | | + | + | T | | Ť | Ť | | | grids) based on transmission requirements | 1 | x | х | | vi. Distributed generation starts (Aggregated) | L | | | | 1 | | | | | | L | | | | | | | | | | | | | | LΪ | | | | | | | | L | LΓ | Х | х | Х | | vii. Demand response enabling (Aggregated) | L | | | | oxdot | Ш | | $oxed{T}$ | Ι | | | | | | | | \perp | | | | | | | | | | | | | | | | | | Х | Х | Х | | viii. Electric storage enabling (Aggregated) | L | | | | | Ш | | $oldsymbol{ op}$ | | | | | П | | ╚ | $\Box T$ | | | | | | | | | П | | | Ш | | | | | | Ш | Х | Х | Х | | ix. Transmission sectionalizing | ┖ | Ш | [| | ┸ | ш | _[| [| L | | | | \Box | | Ш | | [| | Ш | |] | | | | Ш | | | Ш | | [_ | L | | | | Х | \perp | \perp | | x. Voltage, var, and power flow control | <u> </u> | Ш | | ⊥L | 1 | ш | _[| Ц | L | | | | \Box | | $oxed{oxed}$ | | _[| | Ш | | | | | | Ш | | | Ш | | | L | 1 | | | Х | Х | Х | | xi. Other | <u> </u> | Ш | | 4 | 1 | Ш | _ | _ | \perp | _ | <u> </u> | 1 | Ш | | Ш | | _ | \perp | Ш | | | ļ | | | Ш | | 1 | Ш | | | | | _ | \sqcup | 1 | _ | \bot | | j. Real-time restorative functions | ₽- | Ш | _ | _ | _ | \sqcup | \dashv | 4 | \perp | _ | - | 1 | \vdash | | \sqcup | \vdash | + | + | \sqcup | - | | | | <u> </u> | \sqcup | _ | 1 | \sqcup | | \dashv | _ | _ | 1 | \vdash | _ | + | $+\!\!-\!\!\!\!-$ | | i. Auto-synchronization | ₽- | Н | _ | 4 | + | \vdash | 4 | 4 | + | + | <u> </u> | 1 | Н | | \sqcup | \vdash | 4 | + | Н | | | | | | \vdash | _ | 1 | $\vdash \mid$ | | _ | - | + | _ | \vdash | Х | + | + | | ii. Restoration of shed loads | <u> </u> | Н | - | | + | \vdash | _ | 4 | + | - | - | 1 | \vdash | | \vdash | \vdash | - | \perp | | _ | | | | - | \vdash | _ | - | Н | | | - | - | 1 | | _ | + | | | After under-frequency load shedding After under voltage load shedding | \vdash | Н | + | + | + | \vdash | + | + | + | + | - | + | \vdash | | \vdash | \vdash | + | + | H | + | | | | _ | \vdash | + | + | Н | \vdash | + | + | + | + | \vdash | X | +X | X | | After under-voltage load shedding After special load shedding | + | H | | | + | \vdash | + | + | + | + | - | + | \vdash | | \vdash | + | + | + | \vdash | + | | | | - | \vdash | + | - | \vdash | \vdash | + | - | + | + | \vdash | × | + | X | | | | H | + | - | + | \vdash | + | + | + | + | | + | \vdash | | \vdash | \vdash | + | + | | - | | | | | \vdash | + | + | \vdash | \vdash | - | + | + | + | \vdash | - | + | | | iii. Reset of distributed generation iv. Reset of Demand Response | \vdash | H | + | + | + | \vdash | + | + | + | + | | + | \vdash | | \vdash | + | + | + | H | + | | | | | + | + | + | \vdash | \vdash | - | + | + | + | | X | + | -^- | | v. Reset of electric storage | H | Н | + | - | + | + | + | + | + | + | | + | Н | | \vdash | \vdash | + | + | H | + | | | | - | + | + | + | \vdash | \vdash | + | + | + | + | \vdash | Ŷ | -Îx | -^x | | vi. Other | t | Н | + | + | + | \vdash | + | + | + | + | | + | \vdash | | \vdash | \vdash | + | + | H | | | | | | \vdash | + | + | \vdash | \vdash | - | + | + | + | | +^ | Ť | +^- | | Operationally Critical | х | x | X X | X | х | х | х х | × | X | Х | х | х | Х | x | х | x > | < x | х | х | х х | | x | x | | x 2 | x x | Х | х | X : | (x | Х | х | х | х | + | + | + | | Architecturally critical | Ĥ | Ĥ | / | | Ť | Ĥ | - 1 | Ť | 1 | Ť | X | | Х | | X | χ / | <u> </u> | _ | | X X | | | X | | _ | X X | | | | X X | | X | x | X | + | + | | | Semantically critical (Object models) | х | х | x x | : X | х | \vdash | \dashv | \dashv | + | + | X | X | | X | H | H | + | Ť | | x | | х | X | х | X | Ť | | | X : | | | +`` | Ť | x | 1 | | +- | | , , | • | | . 1 | - 1/1 | ١٠, | | | | _ | | | 1., | | - | - | | | | | | | | | <u> </u> | | _ | | | السنا | ^^ | | | | | | | | ## **How to Exchange Information between T&D?** - It is unrealistic to expect that the monitoring and control of transmission operations will reach out to every device and every function in the distribution and customer domains. - The end buses of the near-real time model of transmission operations will be the demarcation points between transmission and distribution domains. ## **Transmission Bus Load Model (TBLM)** It is suggested aggregating the capabilities and the dynamics of distribution operations into TBLM ## **Transmission Bus Load Model (Cont.)** - The TBLM should represent the aggregated - near-real-time, - look-ahead (forecasted), and - available dispatchable loads in distribution #### including - normal and - emergency dependences of these loads on various impacting factors, such as - voltage, - frequency, - demand response controls, - price, - weather, etc. - It should also represent the overlaps of different load management functions, which use the same load under different conditions. ### **Aggregated Bus Load Model** This information should be generated by DMS and should be made available to EMS #### Information and control flows #### The Benefits of TBLM With such a dynamic model, updated by an Advanced DA application (mostly by DOMA) in near-real-time, the advanced EMS applications will be able to use adequate load models and additional aggregated controllable variables for the normal and emergency operations ## The Priority of TBLM Use Case - TBLM is the background use case for supporting transmission, distribution and customer cross-cutting Use Cases - The use of the TBLM will provide the decomposition of the domains and, at the same time, preserving the cross-cutting interrelationships. - If the use cases for transmission operations are developed without the interactions between T&D applications the use cases will not only be incomplete, they will be inadequate for operations of the Smart Grid. #### The Contents of the TBLM Use Case - The Objective of the TBLM, including the coordination of the operations of the downstream active distribution network and the transmission operation applications - The narrative of the TBLM use case - The pre-conditions for the provision of the TBLM - The actors involved in the TBLM - The list and description of logical interfaces with the relevant attributes, like timing, accuracy, volume, etc. - The diagram for the logical interfaces - The sequential steps for periodic and for on-event operations - The workload/messages for each interface. # Thank you!